3.4 Module Performance Tests

3.4.1 ECG Tests and Calibration

ECG Performance Test

Tool required:

■ Fluke Medsim 300B patient simulator recommended

Follow this procedure to perform the test:

- 1. Connect the patient simulator with the ECG module using an ECG cable.
- 2. Set the patient simulator as follows: ECG sinus rhythm, HR=80 bpm with the amplitude as 1mV.
- 3. Check the ECG waves are displayed correctly without noise and the displayed HR value is within 80 ± 1 bpm.
- 4. Disconnect each of the leads in turn and observe the corresponding lead off message displayed on the screen.
- 5. Set that the simulator outputs paced signals and set [**Paced**] to [**Yes**] on the monitor. Check the pace pulse marks on the monitor screen.

ECG Calibration

Tool required:

Vernier caliper

Follow this procedure to perform a calibration:

- 1. Select the ECG parameter window or waveform area \rightarrow [Filter] \rightarrow [Diagnostic].
- 2. Select [Main Menu] \rightarrow [Maintenance>>].
- 3. Select [Calibrate ECG]. A square wave appears on the screen and the message [ECG Calibrating] is displayed.
- 4. Compare the amplitude of the square wave with the wave scale. The difference should be within 5%.
- 5. After completing the calibration, select [Stop Calibrating ECG].

3.4.2 Resp Performance Test

Tool required:

■ Fluke Medsim 300B patient simulator recommended

Follow this procedure to perform the test:

- 1. Connect the patient simulator to the module using a non ESU-proof cable and set lead II as the respiration lead.
- 2. Configure the simulator as follows: lead II as the respiration lead, base impedance line as 1500Ω ; delta impedance as 0.5Ω , respiration rate as 40 rpm.
- 3. Check the Resp wave is displayed without any distortion and the displayed Resp value is within 40 ± 2 rpm.

3.4.3 SpO₂ Test

Tool Required:

■ None.

Follow this procedure to perform the test:

- 1. Connect SpO₂ sensor to the SpO₂ connector of the monitor. Set [**Patient Cat.**] to [**Adu**] and [**PR Source**] to SpO₂ on the monitor.
- 2. Apply the Measure SpO₂ sensor to on your ring finger. (Assume that you stay healthy)
- 3. Check the Pleth wave and PR reading on the screen and make sure that the displayed SpO₂ is within 95% and 100%.
- 4. Remove the SpO₂ sensor from your finger and make sure that an alarm of SpO₂ Sensor Off is triggered.

NOTE

• A functional tester cannot be used to assess the accuracy of a pulse oximeter monitor. However, it can be used to demonstrate that a particular pulse oximeter monitor reproduces a calibration curve that has been independently demonstrated to fulfill a particular accuracy specification.

3.4.4 NIBP Tests

Refer to 3.2.2 NIBP Tests and Calibration.

3.4.5 Temp Test

Tool required:

• Resistance box (with accuracy above 0.1Ω)

Follow this procedure to perform the test:

- 1. Connect the two pins of any Temp connector of a module to the two ends of the resistance box using 2 wires.
- 2. Set the resistance box to 1354.9Ω (corresponding temperature is 37° C).
- 3. Verify that the displayed value is within 37 ± 0.1 °C.
- 4. Repeat steps 1 to 3 and verify another temperature channel.

3.4.6 IBP Tests

IBP Performance Test

Tool required:

- Medsim300B patient simulator, MPS450, or other equivalent device
- Dedicated IBP adapter cable for test (P/N 009-002199-00 for Medsim 300B, P/N 009-002198-00 for MPS450)

Follow this procedure to perform the test:

- 1. Connect the patient simulator with the pressure module.
- 2. Make the patient simulator outputs 0 to an IBP channel.
- 3. Press the Zero Key on the module to make a zero calibration.
- 4. Configure the patient simulator as P (static) = 200 mmHg.
- 5. The displayed value should be within 200 ± 4 mmHg.
- If the error is beyond ±4 mmHg, calibrate the pressure module. If the IBP module was
 calibrated with a dedicated reusable IBP sensor, check the calibration together with this
 IBP sensor.
- 7. Make the patient simulator output 120/80 mmHg ART signal and 120/0 mmHg LV signal to the IBP channel and check that the IBP wave is displayed correctly.
- 8 Repeat the steps above for all the IBP channels.

IBP Pressure Calibration

Method 1

Tools required:

- Medsim300B patient simulator, MPS450, or other equivalent device
- IBP adapter cable for test (P/N 009-002199-00 for Medsim 300B, P/N 009-002198-00 for MPS450)

Follow this procedure to perform the test:

- 1. Connect the patient simulator to the pressure connector on the module.
- 2. Set the patient simulator to 0 for the desired IBP channel.
- 3. Press the Zero Key on the module to make a zero calibration.
- 4. Configure the patient simulator as P (static) = 200 mmHg.
- Select [Main Menu]→ [Maintenance >>]→[User Maintenance >>]→[Cal. IBP Press. >>]. In the [Cal. IBP Press.] menu, set the calibration value to 200 mmHg.
- 6. Select the [Calibrate] button next to the desired IBP channel to start a calibration.
- 7. If the calibration is completed successfully, the message [**Calibration Completed**!] will be displayed. Otherwise, a corresponding message will be displayed.

Method 2

Tools required:

- Standard sphygmomanometer
- Balloon pump
- Tubing
- T-shape connector

To perform a calibration:

- 1. Connect the 3-way stopcock, the sphygmomanometer and the balloon pump through a T-shape connector, as shown below.
- 2. Vent the transducer to the atmospheric pressure by turning on the 3-way stopcock to the air. Zero the transducer, and then open the stopcock to the sphygmomanometer.
- 3. Select [Main Menu]→[Maintenance >>]→[User Maintenance >>]→enter the required password → [Cal. IBP Press. >>] In the [Cal. IBP Press.] menu, set the calibration value to 200 mmHg.
- 4. Inflate using the balloon pump until the reading of sphygmomanometer approximates the preset calibration value.

- 5. Adjust the calibration value in the [Maintain IBP] menu until it is equal to the reading of sphygmomanometer
- 6. Select the [Calibrate] button to start a calibration
- 7. The message [Calibration Completed!] is displayed after a successful calibration. If the calibration failed, the prompt [Calibration Failed!] will be displayed.

3.4.7 C.O. Test

Tools required:

- Medsim300B Patient simulator, or MPS450, or equivalent equipment
- C.O. adapter box (CI-3 module/cable, P/N: 3010-0289 for 300B, P/N: 5180500 for MPS450)
- C.O. trunk cable (PN: 0010-21-42716)

Follow this procedure to perform the test:

- 1. Connect the patient simulator and the C.O. module using a C.O. trunk cable and a C.O. adapter box.
- 2. Set the blood temperature (BT) to 37°C on the patient simulator and check the temperature value displayed on the monitor is 37 ± 0.2 °C.
- 3. On the patient monitor, set [Auto IT] to [Off], [IT] to 2°C, and [Comp. Const.] to 0.595 in the [C.O. Setup] menu. Select [C.O. Measure] to enter the C.O. measurement window.
- 4. Select [Start] in the C.O. measurement window to start C.O. measurements.
- 5. On the patient simulator, set C.O. to 5L/min and wait for 3 to 10 seconds.
- 6. Verify that the C.O. value displayed on the monitor is 5 ± 0.25 L/min.

3.4.8 Mainstream CO₂ Tests

NOTE

• Select [Main Menu]→[Maintenance >>]→ [User Maintenance >>]→enter the required password→[Maintain CO₂], make sure that the setting of [Barometric Pressure] is correct before performing mainstream CO₂ tests.

Tools required:

- A steel gas cylinder with $6\pm 0.05\%$ CO₂
- A steel gas cylinder with compressed air or N₂ (with standard concentration)
- Two 3-way valves (power supply controlled)
- Flowmeter
- Power supply
- Tube

Follow this procedure to perform the test:

- Wait until CO₂ warmup is finished and then select [Start Zero Cal.]from [CO₂ Setup] menu to start a zero calibration. If the zero calibration fails, the prompt message [CO₂ Zero Failed] is displayed. Otherwise, the baseline of waveform recovers to zero.
- 2 Set [Apnea Delay] to $10 \text{ s in the } [\text{Adjust CO}_2 \text{ Limits}] \text{ menu.}$
- 3 Blow to the CO₂ sensor to generate a CO₂ waveform and then place the sensor in the air. Check if the alarm message [**CO**₂ **Apnea**] is displayed on the screen.
- 4 Connect the test system as follows

In the figure above,

- 1 A steel gas cylinder with $6\pm0.05\%$ CO₂
- 2 Flowmeter
- 3 3-way valve (power supply controlled)
- 4 Open to air
- 5 Power supply (controlling two 3-way valves)
- 6 Compressed air or N₂ with standard concentration
- 7 Mainstream CO₂ sensor
- 8 Patient monitor
- 9 Tube (preventing back flow)
- 5 Adjust the power supply and turn on/off 3-way valves to ensure that that only one cylinder is connected to the Mainstream CO₂ sensor via the 3-way valves at one time and the flowmeter reading is stable and within 2 and 5L/min.
- 6 Switch between the two cylinders to connect Mainstream CO_2 sensor at an intervals of 6 to 10s and check if the displayed CO_2 value is within $6.0 \pm 0.3\%$.

3.4.9 Sidestream and Microstream CO₂ Module Tests

See section 3.2.3 Sidestream and Microstream CO₂ Module Tests.

3.4.10 AG Tests

See section 3.2.4 AG Tests.